
Ocrocis

A high accuracy OCR method to convert
early printings into digital text

A Tutorial

Uwe Springmann
Center for Information and Language Processing (CIS)

Ludwig-Maximilians-University, Munich

Email: springmann (at) cis.lmu.de

version history:

version 0.95: 05. March 2015
version 0.96: 11. August 2015

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International
License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0.

http://creativecommons.org/licenses/by-sa/4.0

Ocrocis v. 0.96 2

Contents

1 Abstract 2

2 Introduction 3

3 The OCR workflow 8
3.1 Image acquisition . 8
3.2 Preprocessing . 8
3.3 Training . 10

3.3.1 Annotation . 10
3.3.2 Training a model . 13

3.4 Character recognition . 16
3.5 Postprocessing . 16

4 A practical example 16
4.1 Download the images . 17
4.2 Binarize the images . 17
4.3 Segment into lines . 18
4.4 Choose images to annotate . 18
4.5 Train a model . 19
4.6 Test the models . 20
4.7 Recognize the book . 23
4.8 Extract the text . 23

5 Demo data 24

6 Overview of the command sequence 24

7 References 24

1 Abstract

This tutorial describes the first successful application of OCR to convert scanned images
of books over the complete history ofmodern printing since Gutenberg into highly accu-
rate digital text (above 95% correctly recognized characters for even the earliest books
with good scans). This opens up the possibility of transforming our textual culturage
heritage by OCRmethods into electronic text in a much faster and cheaper way than by
manual transcription.

Ocrocis v. 0.96 3

2 Introduction

By a new method of optical character recognition (OCR) based upon recurrent neural
networks with long short-term memory (Hochreiter and Schmidhuber, 1997), first in-
troduced into OCR by Breuel et al. (2013), it has become possible to convert not only rel-
atively recent printed material into electronic text, but also very old printings reaching
back to the invention of modern printing by Johannes Gensfleisch genannt Gutenberg
(ca. 1450). By early printings we here summarily mean all printings from the incunable
period (1450-1500) until the 19th century, where conventional OCR machines begin to
deliver good results with high character accuracy, defined as the number of correctly
recognized characters divided by the number of all characters in a page or document.

As anyone knows, who tried to apply products such as Abbyy Finereader1 or the open-
source engineTesseract2 to earlier data (OCR is routinely applied to the scans at archive.
org and the resulting text is available for download), the results for early printings are
rather disappointing: The accuracy of the textual output is badly damaged because of
non-standard typography, to which the physical degradation resulting from age and us-
age add additional barriers. Although Tesseract can be trained to new languages and
specific fonts, it seems that the variability arising from early typography and the degra-
dation of the physical images of a typeface, the glyphs, does not lend itself easily to
training. Training experiments for both Tesseract and OCRopus (now called Ocropy3,
Breuel (2014)) by converting available text to noisy images using similar-looking com-
puter fonts showed that only moderate success could be reached (see Springmann et al.,
2014).

The bad accuracy is understandable, as OCR has been developed in the 20th century
with a specific focus on contemporary printings. Any successful application out of its
intended domain means that the OCR engine has to be trained on historical fonts with
all their peculiarities. The neural-network basedOcropy is able to give high-accuracy re-
sults (above 95% accurately recognized characters even for the earliest printings) when
trained on real data, i.e. on the scans of printed text lines as opposed to synthetically
generated images from existing text and computer fonts.

Unfortunately, this software is neither well-known nor does it come with any kind of
documentation apart from an installation Readme file. Furthermore it runs only on
Linux systems. It was also not specifically designed to work on early printings and the
training on English and Fraktur fonts (see Breuel et al., 2013) relied heavily on synthetic
computer generated line images. Still it works very well even on early printings when
trained in a proper fashion.

In order to bring these methods to a larger audience, we decided to publish a docu-
mentation in tutorial form that would enable any interested individual (or the resident

1www.abbyy.com, ocr4linux.com, www.frakturschrift.com
2http://code.google.com/p/tesseract-ocr/
3http://github.com/tmbdev/ocropy

archive.org
archive.org
www.abbyy.com
ocr4linux.com
www.frakturschrift.com
http://code.google.com/p/tesseract-ocr/
http://github.com/tmbdev/ocropy

Ocrocis v. 0.96 4

information specialist) to train a model tailored to a specific book so that the resulting
text fromOCR, given a clean original copy with at least 300 dpi grayscale or color scans,
will have at least 95% character accuracy. In addition, there is a software part written
by David Kaumanns in form of a wrapper script organizing the time consuming process
of annotating line images with their electronic representation (“ground truth” in OCR
speak) and training a specific model. Because Ocropy has many dependencies on other
software and runs natively only under Debian-based Linux systems, we distribute our
software in form of a virtual Docker file which already contains all dependencies. We are
also working tomake it usable on the widely usedMacOS. This tutorial and the software
together go under the name of "Ocrocis" (Springmann and Kaumanns, 2015).

It should be noted that Ocrocis is not a push-button application that delivers excellent
results within minutes by just feeding it a pdf file of page images of an old book, nor do
the process steps described here lend themselves easily to integration in an automated
workflow geared towardsmassOCR conversion (that is the subject of ongoing research).
Rather, we have the individual researcher ("digital humanist", be it a student, a PhD
candidate or an established researcher) inmindwho is interested in a specific early work
whose electronic text is not available elsewhere and who is willing to invest the amount
of manual work necessary to prepare the ground truth needed for the training process.
With some hours of diligent effort for preprocessing and annotating of some training
pages plus some additional hours of training (this is automatic machine work while the
researcher is free to do something else), he or she will be able to extract the text of the
completework plus any additional workswith the same typographic characteristics. The
resulting text can then be used for searching or as a first draft for further correction with
the goal to establish an error-free transcription.

While the method described here is completely general and can be applied to many lan-
guages and alphabets (in fact, the results do not use any dictionaries at all, so accuracy
may further be improved by methods of automatic and interactice postcorrection), it is
especially useful for early printings where there is currently no hope for a decent OCR
result from other engines. Applied to recent printings (especially from the 20th century
onwards), the possible superior character recognition of Ocropy gets counterbalanced
by the much more refined methods of document analysis (differentiating between text
and non-text regions on a page), lexical postcorrection and ease of use of market leading
products.

To give you an idea of what can be achieved by this method we show you some examples
below (see Fig. 1, 2, 3).

4http://digitalhumanities.org/dhq/vol/3/1/000027/000027.html#p7

http://digitalhumanities.org/dhq/vol/3/1/000027/000027.html#p7

Ocrocis v. 0.96 5

Figure 1: Adam von Bodenstein (1557): Wie sich meniglich … (scanned image from
BSB). Right: Uncorrected Ocropy output of a previously unseen page after
training on 32,000 randomly selected text lines (images + associated ground
truth) froma training set of 34 diplomatically transcribed pages. TheOCR re-
sult has 8 remaining errors on this page (5 substitutions marked as red char-
acters, 1 deletionmarked by blue adjacent characters, 2 insertionsmarked by
a red underscore). The mean accuracy on 5 test pages is 99%. Middle: The
output of Abbyy (FineReader Engine SDK 11.1 for Linux) with options -rl
Gothic -rll OldGerman (Gothic script and old German lexicon) recognizes
ſ, but suffers heavily from narrow word spacings, running words together in
the output. The narrow space is the result of early printers' attention to right-
justification: To get a beautifully justified line, words were both abbreviated
and set together very narrowly if needed. Tesseract with language setting -l
deu-frak achieves 78% on this page. (Springmann 2015, in preparation).

Ocrocis v. 0.96 6

ſumque committunt, arg.L. 24. C. de Procuratcribus.Et ſic
JCti Helmſtadienſes menſe februario anni cI I ceXXVIII.ↄ ↄ
reſponderunt: Daferne die ſämmtlige Meiſtere beyder
Innungen in dieſe Denunciation oder Klage nicht gewil-
liget, ſondern ein Theil derſelben die Klagende davon ab-
gemahnet, und deſhalb von dieſen geſchimpffet und ge-
kräncket worden; ſo hätte den Klagenden nicht gebühret,
den Namen der ſämmtligen Mettere unter ihre Klage
zu ſeten, ſondern vielmehr obgelegen, ſich namentlich zu
unterſchreiben, damit der Hr.Beklagte und Denunciat

Figure 2: Augustinus Leyer (1735): In Regis Poloniarvm … Meditationes Ad Pandec-
tas (scanned image from HAB). This is a case of mixed typefaces, Frak-
tur for German and Antiqua for Latin. Training was done on 40 pages in
47,000 steps (randomly presented text lines). The mean accuracy on 8 test
pages is 97%. Abbyy achieves 77%, Tesseract 82%. (Springmann 2015, in
preparation).

Ocrocis v. 0.96 7

Figure 3: Image and OCR result of Vincent of Beauvais’ Speculum Naturale (scanned
image from BSB), printed by Adolf Rusch in Augsburg before 1476. Ocropus
has been trained on 13 pages with accompanying ground truth text, while the
resulting character recognition ratewas tested on additional 4 pages (average
rate: 98%; Springmann 2015, in preparation). The many special glyphs in
incunabula signifying abbreviations were the reason for Rydberg-Cox' state-
ment: "Because of the prevalence of these glyphs, incunabula cannot be pro-
cessed using OCR software. Commercial OCR programs produce almost no
recognizable character strings, let alone searchable text. … Other methods
must be explored.4(Rydberg-Cox, 2009)" For Abbyy and Tesseract, this is
till true.

Ocrocis v. 0.96 8

(a) Google (b) BSB

Figure 4: A snippet from “Alchymistische Practic” (Andreas Libavius, Frankfurt 1603).
At the the right you see the scan as available from BSB, at the left the same
scan with lower resolution as offered by Google. After training a model on
each source, the prediction accuracy is 97% for BSB and 94% for Google.

3 The OCR workflow

Before we describe the Ocrocis commands, we give some information on the general
OCR workflow with hints to each step.

3.1 Image acquisition

The first step is to locate good scans with high resolution (at least 300dpi), preferably
grayscale or color. The advantage of grayscale or color scans is that you have con-
trol over the binarization procedure. Primary sources for freely downloadable scans
are www.hathitrust.org, www.archive.org, www.europeana.eu, the Bavarian State Li-
brary5 (BSB) as the largest collection of digitized books in Germany and the Herzog-
August-Library6 (HAB) at Wolfenbüttel, one of the finest collections of early modern
prints in Europe. There is also Google Books7, which sometimes offers material also
available from other sources such as BSB, but at a reduced resolution and often already
binarized in an uncontrollable fashion. This leads to reduced file sizes, butmay also neg-
atively impact character definition and legibility and hence a loss in achievable accuracy
in the OCR process (see Fig. 4).

3.2 Preprocessing

Preprocessing of page images consists of several steps such as deskewing, dewarping,
despeckling, page segmentation, binarization with the goal to provide the OCR engine

5http://www.digitale-sammlungen.de,
http://opacplus.bsb-muenchen.de/metaopac/search.do?methodToCall=selectLanguage&
Language=en

6http://www.hab.de, http://opac.lbs-braunschweig.gbv.de/DB=2/LNG=EN/
7http://books.google.com/

www.hathitrust.org
www.archive.org
www.europeana.eu
http://www.digitale-sammlungen.de
http://opacplus.bsb-muenchen.de/metaopac/search.do?methodToCall=selectLanguage&Language=en
http://opacplus.bsb-muenchen.de/metaopac/search.do?methodToCall=selectLanguage&Language=en
http://www.hab.de
http://opac.lbs-braunschweig.gbv.de/DB=2/LNG=EN/
http://books.google.com/

Ocrocis v. 0.96 9

1.5

(a) original page image (b) binarized (c) line segmented

Figure 5: Preprocessing done by Ocropy: Deskewing & binarization (b) and text line
segmentation (c). Scanned image of Bacon's Essaies (1613) from archive.
org.

with the best possible input, i.e. a clear separation of glyphs (signal) and background
(noise). Although Ocropy (and hence Ocrocis) contains inbuilt functions to do prepro-
cessing, the process is by no means error-free (this is true for all OCR engines). Espe-
cially page segmentation can be cumbersome: If the images have a multi-column layout
or marginal notes, the recognition will greatly benefit if you either cut out subimages
of a page pertaining to different zones such as margins, columns, headings etc. (this
process is called “zoning”) and subject them to OCR separately, or at least crop the in-
teresting textual material so that no contamination happens from anymarginal or other
material (like handwritten notes, floral decoration etc.). Footnotes with multilingual
alphabets can also be problematic. Ocropy will ultimately resolve a printed page into
single text lines, and anything not aligned with these lines is noise that will disturb the
training process. The open-source software ScanTailor8, available both with a GUI and
as a command-line utility, has proven to be of good value.

Apart from training, preprocessing is the single most important step for achieving good
OCR results, and it even sets the limit for what training can achieve (see Fig. 4 (a) and
(b), which both originate from the same scan but treat binarization differently; the same
is true for the segmentation in text versus non-text lines).

In order to prepare for training as well as the later recognition step, Ocropy will segment
page images into single text lines (see Fig. 5). After binarization of the pages, each page
image will get its own directory wherein each file corresponds to a single text line.

8http://scantailor.org/

archive.org
archive.org
http://scantailor.org/

Ocrocis v. 0.96 10

3.3 Training

Training is at the heart of the effectiveness of the new OCR method. It works by learn-
ing fromproperly annotated text line images, comparing a horizontal line of pixel inputs
with its corresponding “ground truth” correctly transcribed text. Having seen such an-
notated lines repeatedly and comparing input and desired output, the neural network
underlying Ocropy adjusts its internal states in such a way that it is eventually able to
predict the correct glyph values when being shown hitherto unseen, new text line im-
ages. The adapted internal states of the network are saved as a “model” in a file, so that it
can later be loaded into memory, enabling the recognition of new text from page images
with the same typographical characteristics as those on which it has been trained (e.g.,
all the rest of the book from which the training pages have been taken).

Contrary to other OCR engines, however, Ocropy does not use single characters as the
smallest recognizable entity. Rather, its “atomic constituents” are vertical slices of pixel
values, called “frames”, along the text line image. A single text line gets sliced up into as
many as 1000 frames, so that each glyph (character or ligature) gets resolved into several
slices. By repeatedly comparing the input pixel values for each frame to the desired
output (ground truth for a glyph), the neural network adjusts its internal memory states
in such a way that it “learns” to produce the correct glyph from all frames corresponding
to this glyph, including the white space separating single words.

The first step, therefore, consists in annotating a number of printed text lines with its
electronic counterpart.

3.3.1 Annotation

Transcribing printed text lines can conveniently be done in a browser which will display
the earlier segmented line images alternated by an empty line into which the user will
have to enter the ground truth (Fig. 6).

You have to decide what level of historical detail you want to preserve: For a real diplo-
matic transcription, you will want to record the long s (ſ) as well as the vowel ligatures
Æ,æ and Œ, œ plus all the diacritics that may be present in printing. Otherwise, you
just transcribe both s and ſ by s (both glyphs will be recognized and mapped to s, so
you avoid the infamous misrecognition of ſ as f present in most OCR results of older
books) and resolve the ligatures to ae and oe. On the other hand, you must not map the
same (or identically looking) glyph to different characters, as otherwise the system will
be confused about the character that is represented by a specific glyph (this means that
you have to transcribe printing errors as well!). Fig. 7 gives an example of a glyph with
two meanings (m and z) which needs to be annotated by a single character to ensure
a stable prediction that does not randomly alternate between two different character
annotations. The resolution of this ambiguity must then be dealt with during the post-
correction phase.

Ocrocis v. 0.96 11

Figure 6: A browser window with line images and additional space into which ground
truth is being entered. Spellchecking in the browser is enabled but will high-
light historical spellings as well as real transcription errors.

(a) latinum (b) stabwurcz

Figure 7: JohannWonnecke von Kaub (Johannes de Cuba), Gart der Gesundheit, Ulm
1487. The same glyph is employed for both the occasional designation of m
at the end of a word (latinum) and the character z (stabwurcz).

Ocrocis v. 0.96 12

As is obvious from Fig. 3, the (human) recognition and correct transcription of incunab-
ula require palæographical skills. The Medieval Unicode Font Initiative (MUFI9) gives
a comprehensive catalog of all UTF-8 codes that can be employed for the transcription.
You will have to consult your operating system to learn how to input Unicode codes; un-
der Linux/Gnome (including Debian and Ubuntu), it is just a matter of pressing CTRL-
SHIFT u followed by the 4-digit hexcode. For letters with diacritics, there often exist dif-
ferent Unicode representations, either as base letter + diacritic (two codepoints, decom-
posed form) or a single code for the complete symbol (composed form). Use whatever is
most convenient for you to input (accents may faster be written by the keyboard's mute
keys), as the ground truth will later automatically be normalized to Unicode's "Normal
Form Composed" (NFC)10. Also, the symbol inventory will be automatically determined
from your annotation data and written to the file charset.txt.

In annotating text lines for later training, we need to strive for a fair representation of
the kind of glyphs that we are going to see frequently in the book pages. By that wemean
that ideally every glyph should be represented with the same frequency. We are saying
glyph instead of character because already the form of the representation of a character,
be it upright, italic, upper or lower case etc. will make a difference in appearance and
therefore need to be learned separately. Individual letter frequencies do vary widely in
any real language and we cannot expect to recognize a letter which has never, or only
very infrequently, shown up in our trainingmaterial. The same is true for other symbols
such as punctuation or numerals. Aswe cannot control individual symbol frequencies as
long as our text lines consist of real text and not just strings of statistically equiprobable
symbols, we can at leastmake surewe have a good proportion of all those kinds of glyphs
in our training material that are going to show up fairly often. Those that are relatively
infrequent will be learned less well and have a higher probability of misrecognition than
more frequent symbols. If we train on English prose text, the following glyphs can be
expected to be underrepresented: capital letters, questionmarks, italics (if only used for
headings), numbers.

The quintessence of this discussion is that wemust choose our training pages with some
discretion. We cannot just transcribe the first 20 pages of a book, consisting of the title
page with unusually large letters, the preface and the table of contents which may be
printed in italics, and then hope to get good recognition results on the following 300
pages printed in upright Roman style. Rather, we might take 5 pages of italics to com-
pensate for their later infrequent appearance in headings and citations only, and use
another 15 pages of the bulk material of the book. If the scans are not uniform, it is a
good idea not to take consecutive pages for training but to sample them over the whole
book. With a view on later postprocessing, it is more efficient to get the bulk of a book
recognized well and transcribe the title page manually than the other way round.

9http://folk.uib.no/hnooh/mufi/specs/index.html
10Actually, Ocropy will currently normalize to NFKC: normal form compatible composed, lumping e.g. s

and ſ to s before training. So you cannot currently get an ſ in recognition output except if you install
Ocropy directly and input the used symbols as a separate "codec" in the file chars.py.

http://folk.uib.no/hnooh/mufi/specs/index.html

Ocrocis v. 0.96 13

Figure 8: Instances of segmentation errors. Left: An incomplete drop capital has en-
tered the line. Crop it or drop it (leave the annotation blank). Right: Two
lines segmented as one. Drop it.

You should also avoid to choose pages with illustrations, marginal notes or decorations.
To get pure text lines, we would either have to cut out these items before text segmen-
tation or at least to crop the annotated text lines to reduce noise. At the present stage
the goal is not to get a good recognition of the text on a specific page but to get a large
number of training lines with the least effort. If one still hits a bad line in the browser
(e.g. a line with noise at the end), one could annotate the line and crop the image, or
leave its text line blank. In the case of two or more lines segmented as one line, we must
leave the text line blank, as it would not yield a meaningful training line. Lines without
associated ground truth will be ignored in training.

3.3.2 Training a model

Model training is largely automatic, the only things one has to decide are:

• the number nlinesof training lines (these have to be annotated as described above)

• the number ntrain of training steps

• the number of training steps savefreq after which a new model gets written to
disk

There are further internal network parameters which are best left at their default values
unless you are an expert.

In our experience we got good models with 1,000 … 5,000 training lines (the higher
number for font and typeface mixtures) which required 30,000 to 200,000 training
steps. The question is when adding more training data will not noticeably improve the
recognition performance. To find that out in an efficient way, one can start with about
300 training lines, train for 100 epochs (an epoch is the number of training steps after
which the randomly drawn lines have on average been seen once and therefore equals
the number of lines), addmore training lines, use the best savedmodel from the previous
step for a recognition of the new lines which then only need to be corrected to generate
new ground truth, and so on. Set aside about 10% of annotated lines for testing the
model performance. Once the performance shows fluctuating values without any trend,
you can stop further training.

Here is our rule of thumbs: nlines = 300, ntrain = 30, 000, savefreq = 1, 000.

Ocrocis v. 0.96 14

This will ensure 100 epochs of training and 30 saved models per iteration. Training for
30,000 steps will take some hours on a modern PC.

The procedure is then as follows:

1. Identify about 10 good training pages.

2. Annotate at least 300 lines.

3. Set 10% of annotated lines aside for testing.

4. Train on the remaining lines for 30,000 steps.

5. Find the best model by comparing their error rate on the testing lines.

6. Identify additional training pages and segment another 300 lines.

7. OCR these new lines with the best model from the last iteration.

8. Annotate the new lines by correcting the OCR result.

9. Add 10% of the new lines to the testing pool.

10. Add the remaining lines to the training pool.

11. Continue training (start with the last best model) on the training pool for another
30,000 steps.

12. Find the best model from the new iteration.

13. Continue the process until model performance shows fluctuations without trend.

14. Identify the best model and OCR complete book.

15. Save your annotated data and your best model.

If you are impatient, you can annotatemore lines per iteration so that you need only one
or two iterations until you finish. Then update the training steps and the model saving
frequency accordingly.

Testing your models works by using themodel to OCR the test line images (predict their
characters) and comparing the generated text with the previously annotated ground
truth.

You will notice that once the models get really good in reproducing the training data,
sometimes the discrepancies between OCR output and ground truth do not arise from
faults in the model but from errors in your own annotations! In that case correct your
ground truth, otherwise your transcription error rate will set an upper limit for the
achievable OCR accuracy.

If you installed Ocropy locally, you can watch your network train by the command

ocropus-rtrain -o modelname -d 1 book/*/*.bin.png

(-d 1 updates the picture in Fig. 9with every input line, -d 2with every second line etc.).

Ocrocis v. 0.96 15

Figure 9: Training in progress. The upmost panel shows a line image with its associ-
ated ground truth. The numbers below the line are the frames into which
the image gets sliced. The next two black panels give the output of the net-
work: each small light horizontal line corresponds to a number at the left
side which enumerates a specific glyph (think of these numbers as a repre-
sentation of a typographer's type case). The lower numbers (upper part of the
panel) correspond to numerals followed by letters and special glyphs in the
lower part (the twoæ-ligatures are represented by a number larger than 100).
As you see, the already well converged model shows mostly letters (middle
area). The output of the network closely resembles the annotated ground
truth. The next panel shows posterior probabilities for each character. Their
rectangular form indicates that the network is fairly sure aboutwhich charac-
ter corresponds to a specific glyph. Inter-word distances are shown in green,
characters in blue. The last panel shows the training progress, both per line
(the spiky line) and as amoving average of the least squares distance between
aligned and unaligned output (the two panels above). The dashed red line is
amoving average of the character errors per output line. This panel's vertical
number correspond to the learning steps of the network. There has not been
much change in the last few thousand steps, so the network has reached a
quasi-steady state.

Ocrocis v. 0.96 16

3.4 Character recognition

Once you have a good model, you can run it on a total book directory. The OCR en-
gine will go through the page directories under book/ and generate character string for
each line image. In addition to misrecognitions at the character level which got tested
with the annotated test lines, now also segmentations faults such as bad text/non-text
separation or several lines recognized as one will take their toll. If the scanned mate-
rial contains a lot of non-text material, a better preprocessing could remedy this error
source as discussed above.

The text can be extracted either as pure text (UTF-8) or as hocr with line coordinates.

3.5 Postprocessing

As the OCR result is by no means a perfect representation of the printed text, postpro-
cessing the output will generally be necessary. Depending on your interests the rawOCR
outputmight ormight not be what you want. Searching will findmany instances but not
all; tolerant search will find more instances, but some of them will be false positives. If
the discoveries are highlighted in the images one will quickly be able to discard these
false positives by just looking at them. The percentage of misses will be lower and what
you get might be sufficient (e.g. if you look for some attestations of word or grammar
usage, or citations). Tolerant search can also cope with historical spelling patterns by
employing correspondence rules between modern and historical spellings.

Another area is the postcorrection of the OCR result, either with or without spelling
normalizations. If you need error-free text, a highly accurate OCR result will save you
much transcription time when going systematically over each line, comparing it with its
printed counterpart and correcting just the errors rather then transcribing the complete
line from scratch. Even more efficient is the usage of the tool PoCoTo (for PostCorrec-
tionTool, developed at CIS (Vobl et al., 2014)) for interactive error correction, which
presents complete error series based upon a calculated statistical error profile for the
document that is to be corrected. After inspecting the error series (e.g., e misrecognized
as c), the user approves or changes the correction candidates and can then correct the
whole series at the click of a button. The tool is able to distinguish between histori-
cal spellings and OCR errors, both of which are at odds with a lexicon of modern word
forms. We are working to make the tool and the server calculating the error profiles
openly available together with documentation how to install and use it.

4 A practical example

Having learned something about OCR in general and Ocropy specifically, we now take
a practical example and run through the above steps, explaining the specific commands

Ocrocis v. 0.96 17

along the way.

Installation of the Ocrocis software is explained in its README11, for installation of
Ocropy see its github repository.12. The following assumes that you are working in a
project directory, e.g. OCR/projects/bacon/. After installation, there is help available
for each Ocrocis command, e.g. ocrocis convert --help, as well as for the Ocropy
commands, if you choose to install Ocropynatively andworkwith its commandsdirectly.
See Sect. 6 for a tabular overview of the input and output associated

We will take the 1603 edition of the Essays of Sir Francis Bacon13 as an example. Many
editions can be found on www.archive.org and the electronic text is available in several
places on the internet, so we will not uncover something new. It just represents any
early printing you might actually be interested in.

4.1 Download the images

The 1603 edition at archive.org14 is offered in djvu, pdf and jp2 format. The jp2-images
have the best resolution, so download the zip archive15.

Next unpack the zip-file and put all images under a book/ directory in your project di-
rectory.

4.2 Binarize the images

Next issue the command:

ocrocis convert

which will take the jp2 images, convert them to png, and then do deskewing and bina-
rization. This will take some time, you could use the option --cpus 4 (4 cpus, if you have
them) to accelerate. The convert part is done by ImageMagick's convert, which comes
with its own set of options. Other image formats (tif, png, jpg) are understood byOcropy
directly and will be binarized right away. If you start from still other formats, convert
them first to png and put the png under the book directory before you issue the ocrocis
convert command. Make sure you have at least 300 dpi png; sometimes you might
need to do a convert -density 300 <file>.pdf if you end up with thumbnail-like
images.

If you prefer to work with Ocropy commands directly, the equivalent command is:

11see https://code.google.com/p/cistern/wiki/Ocrocis
12https://github.com/tmbdev/ocropy
13http://en.wikipedia.org/wiki/Essays_Francis_Bacon
14https://archive.org/details/essaiesofsrfranc00baco
15https://ia600400.us.archive.org/22/items/essaiesofsrfranc00baco/

essaiesofsrfranc00baco_jp2.zip

www.archive.org
https://code.google.com/p/cistern/wiki/Ocrocis
https://github.com/tmbdev/ocropy
http://en.wikipedia.org/wiki/Essays_Francis_Bacon
https://archive.org/details/essaiesofsrfranc00baco
https://ia600400.us.archive.org/22/items/essaiesofsrfranc00baco/essaiesofsrfranc00baco_jp2.zip
https://ia600400.us.archive.org/22/items/essaiesofsrfranc00baco/essaiesofsrfranc00baco_jp2.zip

Ocrocis v. 0.96 18

ocropus-nlbin <image-dir>/*.png -o book

4.3 Segment into lines

Line segmentation is done by the command:

ocrocis burst

or

ocropus-gpageseg book/*.bin.png

You now have single page directories under textttbook/ named 0004, 0006, 0007 etc.
(the missing numbers correspond to pages where Ocropy could not find any text) with
text line files ending in bin.png.

4.4 Choose images to annotate

According to our earlier discussion in Sect. 3.3.1, we are looking for pure text pages with
a fair representation of the typefaces employed in the bulk of the book. The text ismostly
printed in upright Roman, but italics are also present. We therefore take a few pages of
the table of contents with all-italics and frequent numbers, then some pages of regular
text. With Ocropy, you would edit an html-file with line images to annotate by, e.g.

ocropus-gtedit html book/00[1-2][0-9]/*.bin.png

which results in a file correction.html containing the line images of pages 10-29. After
you annotated this file, the command

ocropus-gtedit extract correction.html

will put the annotated gt-lines as text files into the original book image directories (the
directory book/0010/010001.bin.png will now also contain a file book/0010/010001.
gt.txt etc., except if you chose not to annotate that specific line). Choose a subset of
the annotated pages and copy them to a training directory, the remaining part to a test
directory. These are your gold data and no matter what you do later (e.g. if you remove
the book directory and start over again), you will not lose your work. You may later add
additional annotations to both the train and test directories.

As this process entails a certain amount of bookkeeping, Ocrocis strives tomake it easier.
Taking the pages 10-29 for your first iteration, you will write:

ocrocis next {10..29}

A file named Correction.html will be generated under iterations/01/. This file needs
to be edited in your browser, leaving any badly segmented lines empty. After you have
annotated the file, save it to the same name and place.

Ocrocis v. 0.96 19

4.5 Train a model

From the annotation set of page images we will choose a subset for training (the rest will
later go into a test directory):

ocrocis train --ntrain 30000 --savefreq 1000 {10..24}

This will copy the ground truth into iterations/01/annotation/, link it to a newly
created training directory, determine the set of individual characters (written to book/
charset.txt) and start model training.

With Ocropus, you have already setup your annotated data in training and test directo-
ries. The most basic training command would consist of:

ocropus-rtrain -c <train-dir>/*/*.gt.txt <test-dir>/*/*.gt.txt -o <model>
<train-dir>/*/*.bin.png

The defaults for training steps are 1,000,000 and for saving frequency 1,000. Watching
training proceed in a terminal gives you a rough idea how well the ground truth is being
recognized by the network. Every 1,000 steps a model gets saved to disk.

Note that currently Ocropy with the -c option does a NFKC normalization to determine
the set of all characters, so an ſ will be lost in the output layer of the network. In order
not to lose any annotation labels such as ſ, you will have to NFKC normalize your own
ground truth data as well (this can be done by the uconv tool; it will convert all ſ into
s, among other things). Another option would be to add a string of your additionally
used characters to the file chars.py (look under ocropy/lib/python/ocrolib) as a new
codec (e.g., mychars) and add it to the default codec:

digits = u"0123456789"
letters = u"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
symbols = ur"""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""
ascii = digits+letters+symbols
xsymbols = u"""€¢£»«›‹÷©®†‡°�•◦�¶§÷¡¿��"""
mychars = u"ãẽĩõũỹñm̃áéíóúýàèìòùỳâêîôûŷęëßſÆæŒœ"
default = ascii+xsymbols+mychars

This is just an example, you get the idea. If you did this, the training command would
just be

ocropus-rtrain -o <modelname> <training-dir>/*/*.bin.png

The training progress can be watched on the terminal from which you issued the above
commands (another way to watch the training progress in time was shown in Fig. 9).
The output looks like this:

Ocrocis v. 0.96 20

16011 5.58 (423, 48) train/0010/010009.bin.png
TRU: u'6 Of Parents and Children.'
ALN: u'6 Of Parents and Children.'
OUT: u' dOf Parents and Children.'

16012 9.00 (561, 48) train/0014/010003.bin.png
TRU: u'my, when the Deuill \u017faide; I will a-'
ALN: u'my, when the Deuill \u017faide; II will a-'
OUT: u'my, when the Deuill aide; will a-'

16013 5.98 (520, 48) train/0014/010015.bin.png
TRU: u'of Pirats and A\u017f\u017fa\u017f\u017fins. Therefore'
ALN: u'of Pirats and A\u017f\u017fa\u017f\u017fins. Therefore'
OUT: u'of Pirats and A\u017f\u017fa\u017f\u017fins. Therefore'

The left-justified line gives the training step (here 16011, 16012 and 16013) followed by
a measure of uncertainty. It is never zero even for a perfect recognition result as in the
third line, because a recognition has a posterior probability between 0 and 100% for
each character, and the uncertainty gives the sum of these numbers over the whole line.
The next two numbers in parentheses are the pixel width and height of the line image,
then the corresponding file name of that line image.

The next three lines give the ground truth (TRU), the network output after it has looked
at the data (ALN for aligned) and the real network prediction (OUT). A perfectly trained
network would show three lines with identical output (as in the case of the last line). The
first line shows that the number 6 has not yet learned (it is confusedwith the letter d, and
the inter-word space has not been correctly recognized). The output is given in ASCII as
not all terminals understand UTF-8, therefore UTF-8 sequences are shown for special
non-ASCII characters such as \u017f for ſ. The second line shows that the network is
still uncertain about ſ and I, so these characters are not given. Also, the aligned output
shows two II instead of one; both of these errors go away with enough training.

If the network has generally very low uncertainties on its recognition, but sometimes a
high value, this more often than not indicates an error not in its recognition but in the
ground truth. Correct the ground truth while the training is running. The next time this
line comes up for training the error will diminish.

4.6 Test the models

The performance of your model on unseen data is tested by the command

ocrocis predict --errors

which takes the remaining data not used for training, runs anOCRwith either a specified
or the last model on it, and compares the output with the annotated ground truth.

Ocrocis v. 0.96 21

If you want to improve the model, you can try do to so with the next iteration of annota-
tions. Follow the steps above for new pages and the annotated data will be added to the
training and test data pool.

On the Ocropy side, a model can be tested against unseen test data by first running an
OCR with a model:

ocropus-rpred -m <modelname> test/*/*.bin.png

and then

ocropus-errs test/*/*.gt.txt

which will give you an output such as:

3 33 test/0045/010009.gt.txt
5 37 test/0045/01000a.gt.txt
7 39 test/0045/01000b.gt.txt
2 34 test/0045/01000e.gt.txt
1 5 test/0045/01001a.gt.txt

errors 317
missing 5
total 3450
err 9.188 %
errnomiss 9.043 %

For each test line, it gives the number of recognition errors, the number of characters in
each line and the file name of the ground truth line against which the recognition result
is evaluated. The last 5 lines give error statistics: The number of errors summed over all
lines, the number of errors in "missing" lines (these lines are too short to give reliable
results; Ocropy does not learn somuch single characters as characters in the context of a
complete line). One of those missing lines is the last one consisting of just 5 characters:
This is a case of a so-called catchword which gives the first word or syllable of the next
page at the end of the previous page, an age-old typographical habit fallen since out of
use. Next comes the total number of characters in the test set and the error rate, both
as the fraction of errors to the total number of characters and the smaller rate adjusted
for missing lines.

It is also possible to view the confusion matrix (which letters get confused for which
others) by

ocropus-econf test/*/*.gt.txt

which yields:

Ocrocis v. 0.96 22

errors 317
missing 5
total 3450
err 9.188 %
errnomiss 9.043 %
13 _ i
8 ſ f
5 a _
5 s _
5 _ T
4 _ t
4 i _
4 b h
4 u n
4 _ e
0.091884057971

This is the same 5 line statistics as above followed by the 10 most frequent confusions,
followed again by the error rate. The first column of the confusion matrix gives the fre-
quency a specific confusion happens, the second the recognition result, the third the
ground truth. So 13 times an i has not been recognized and left out (deletions are in-
dicated by a _ in the recognition column), 8 times an f has been misrecognized as an ſ
(substitution) and 5 times an a has been inserted where it does not belong (insertions,
indicated by _ in the ground truth). See the command's help for adding context etc.

If youhave a lot ofmodels, the questionwhich one is the best canbe answeredby running
recognition and a subsequent test on each of them. This can easily be effected by a shell
script of the form

for i in *.pyrnn.gz; do echo "$i" >> modeltest; ocropus-rpred -m "$i"
test/*/*.bin.png; ocropus-errs test/*/*.gt.txt 2>>modeltest; done

You will have in the file modeltest the name of each model followed by its 5 line error
statistics listed one after the other. Find the model with the least error and keep it; the
others might be deleted. For reference, the error levels of our models after every 1,000
training steps both for our training data (344 annotated lines) and our test data (112
lines) are given in Fig. 10. As you see, the error level hits a barrier at about 6% and
the network tries several times to reorganize itself, leading to a dramatic increase in its
recognition error followed by adaptation again. This situation can usually only be solved
by adding more training data. Given our 112 test lines, we should go on and annotated
more training lines (1000 at least). But as we already got an accuracy of above 95%,
we have proven our assertion and stop here. Had you followed our earlier advice, you
would have stopped already at 30,000 steps with the best model at 19,000 steps and an
error of 6.2% and added more ground truth which is the sensible thing to do.

Ocrocis v. 0.96 23

Figure 10: The evolution of recognition errors of different models (at 1000 training
steps each) determined from the test data. The best model is the one at
155,000 steps with 4,87% error.

4.7 Recognize the book

With the best model identified, we can now run OCR over the book directory by

ocrocis predict --book

or

ocropus-rpred -m <bestmodel> book/*/*.bin.png

4.8 Extract the text

To get the text lines out of the book page subdirectories, we can do several things:

• shell script:
for i in book/*/*.gt.txt; do cat "$i" ; echo ""; done > gt.txt

• ocropus-gtedit text book/*/*.bin.png
(you will have to delete the line identifiers by cut -b 17- correct.txt > gt.txt)

• ocropus-hocr book/*.bin.png
This gives you an hocr-file with line coordinates, which can directly be viewed in
a browser.

Ocrocis v. 0.96 24

Now you have your OCR text for the whole document and you are ready for postprocess-
ing!

5 Demo data

To enable you to better follow this tutorial and to do your own experiments, we give you
the set of our annotated training and testing data together with our best model as a file
tutdemo.zip. These data may be downloaded at our Ocrocis repository16.

6 Overview of the command sequence

Here is an overview of the command sequence from preprocessing page images to get-
ting the OCR'ed text together with input and output of each step for both the Ocropy
and Ocrocis case:

Stage Ocropy Ocrocis Input Output

binarization ocropus-nlbin ocrocis convert <page>.png <page>.bin.png

page segmentation ocropus-gpageseg ocrocis burst <page>.bin.png <line>.bin.png

annotation ocropus-gtedit html ocrocis next <line>.bin.png <line>.gt.txt

training ocropus-rtrain ocrocis train <line>.bin.png + <line>.gt.txt model

test recognition ocropus-rpred
ocrocis predict

<line>.bin.png + model <line>.txt

testing
ocropus-errs <line>.txt + <line>.gt.txt # errors, accuracy

ocropus-econf <line>.txt + <line>.gt.txt confusion matrix

book recognition ocropus-rpred ocrocis predict --book <line>.bin.png + model <line>.txt

text extraction
ocropus-hocr <line>.txt <doc>.html

ocropus-gtedit text <line>.txt <doc>.txt

Ocropus needs to recognize the test data before it can do testing; Ocrocis does recogni-
tion and testing in one step and (later) recognition of the complete book with a slightly
different command.

If you install Ocropy natively and Ocrocis with ./install perl-only, you will have
both sets of commands at your disposal.

7 References

Breuel, T. (2014). A Python-based OCR package using recurrent neural networks.
https://github.com/tmbdev/ocropy.

16https://code.google.com/p/cistern/wiki/Ocrocis

https://github.com/tmbdev/ocropy
https://code.google.com/p/cistern/wiki/Ocrocis

Ocrocis v. 0.96 25

Breuel, T. M., Ul-Hasan, A., Al-Azawi, M. A., and Shafait, F. (2013). High-performance
OCR for printed English and Fraktur using LSTM networks. In 2th International
Conference on Document Analysis and Recognition (ICDAR), 2013, pages 683--687.
IEEE.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural compu-
tation, 9(8):1735--1780.

Rydberg-Cox, J. A. (2009). Digitizing latin incunabula: Challenges, methods, and pos-
sibilities. Digital Humanities Quarterly, 3(1).

Springmann, U. and Kaumanns, D. (2015). Ocrocis -- a high accuracy OCR method to
convert early printings into digital text. http://cistern.cis.lmu.de/ocrocis/.

Springmann, U., Najock, D., Morgenroth, H., Schmid, H., Gotscharek, A., and Fink,
F. (2014). OCR of historical printings of Latin texts: problems, prospects, progress.
In Proceedings of the First International Conference on Digital Access to Textual
Cultural Heritage, DATeCH '14, pages 57--61, New York, NY, USA. ACM.

Vobl, T., Gotscharek, A., Reffle, U., Ringlstetter, C., and Schulz, K. U. (2014). PoCoTo
- an Open Source System for Efficient Interactive Postcorrection of OCRed Histori-
cal Texts. In Proceedings of the First International Conference on Digital Access to
Textual Cultural Heritage, DATeCH '14, pages 57--61, New York, NY, USA. ACM.

http://cistern.cis.lmu.de/ocrocis/

	Abstract
	Introduction
	The OCR workflow
	Image acquisition
	Preprocessing
	Training
	Annotation
	Training a model

	Character recognition
	Postprocessing

	A practical example
	Download the images
	Binarize the images
	Segment into lines
	Choose images to annotate
	Train a model
	Test the models
	Recognize the book
	Extract the text

	Demo data
	Overview of the command sequence
	References

